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Transversal parametric oscillation and its external stability in photorefractive sillenite crystals
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We develop the nonlinear theory of transversal parametric oscillation in photorefractive sillenite crystals.
The theory is nonlinear in the sense that the nonlinear feedback from the parametric space-charge field waves,
above threshold of their excitation, is taken into account. In this manner, an analytical solution for the station-
ary state of the parametric waves is obtained. We analyze the stationary states’ stability both against small
perturbations in amplitude and phase~internal stability! and against excitation of new secondary waves~ex-
ternal stability!. It is shown that the stationary state of transversal parametric oscillation is stable within certain
regions of external and internal parameters. This is opposed to the degenerate case~K/2 subharmonic genera-
tion!, which is unstable.@S1063-651X~98!07505-9#

PACS number~s!: 42.40.Pa, 42.65.Hw, 42.70.Nq
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I. INTRODUCTION

The parametric wave interaction is a very general p
nomenon observed for many types of waves in continu
media. The interaction is known, for example, for plasm
waves@1,2#, spin waves@3#, and optical waves@4#. One of
the latest examples of parametric wave interaction is the
that takes place between so-called space-charge w
~SCWs! in photorefractive crystals of the sillenite famil
@Bi12SiO20, ~BSO!, Bi12GeO20, and Bi12TiO20#. This is the
subject of the present paper.

One of the most common ways of exciting SCWs in
sillenite crystal is to apply a constant, homogeneous elec
field to the crystal and then illuminate it by two intersecti
coherent laser beams, as shown schematically in Fig. 1.
laser beams form a light interference pattern in the cry
and by introducing a frequency shiftV in one of the beams
the light pattern starts moving in a direction perpendicula
the light fringes. As a consequence of the photorefrac
effect, this light pattern, which may be thought of as a wa
of light intensity, is followed by the formation of a SCW tha

has the same wave vector,KW , and frequency,V, as the in-
tensity pattern. This SCW is referred to as the fundame
wave. When the frequency is varied, one can observe a r
nant behavior of the fundamental SCW whenV reaches the
medium’s eigenfrequency@5#.

In 1988 Mallick et al. @6# discovered a new and ver
spectacular phenomenon when they excited a SCW as
lined above. They found that whenV was increased wel
above the eigenfrequency, the SCW lost the spatial per
icity of the driving light pattern. In the simplest case, a SC

with the spatial frequencyKW /2 appeared in addition to th

fundamental SCW with wave vectorKW . By further increas-
ing V the authors observed that the wave vector of the a

tional SCW changed fromKW /2 to KW /3 and then toKW /4. Since
the wave vectors of the additional waves appeared to be

teger fractions ofKW , this new effect was referred to as spat
subharmonic generation. However, in the years that
571063-651X/98/57~5!/6112~15!/$15.00
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lowed, the cases ofKW /2, KW /3, andKW /4 subharmonic genera
tion proved to be just special cases of a much wider clas
phenomena which includes continuous broadening and s
ting of the additional wave vectors along both the longitu

nal ~parallel toKW ! and transversal~perpendicular toKW ! direc-
tions@7–10#. The whole class of phenomena may be refer
to as photorefractive parametric oscillation~PPO! @7# be-
cause of its close resemblance to the analogous optical
cess, optical parametric oscillation. In characterizing PP
one can distinguish between three characteristic types
have been observed experimentally, degenerate~DPO!, lon-
gitudinal ~LPO!, and transversal~TPO! parametric oscilla-
tion @10#. The wave vector schemes of the three types
illustrated in Fig. 2.

The origin of PPO became clear a few years ago@11–13#.
It turned out that parametric excitation of weakly damp
low-frequency eigenmodes of the medium—parame
SCWs @14,15#—lies in its basis. The existence of suc
modes in the sillenite crystals is due to a large value of
lifetime-mobility product for photoelectrons. This gives ris
to a large drift length of the photoelectrons and, con
quently, a large quality factor of the SCWs, see, e.g.,@11#.
As the threshold of the instability leading to PPO decrea
with an increasing quality factor, the SCWs are easiest
cited when the lifetime-mobility product is large. The par

FIG. 1. Schematic diagram of the basic configuration for ex
ing space-charge waves in a photorefractive sillenite crystal.
6112 © 1998 The American Physical Society
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57 6113TRANSVERSAL PARAMETRIC OSCILLATION AND ITS . . .
metric resonance conditions are provided either by freque
detuned light waves@6,16–18# ~running grating technique!
or by an alternating applied electric field@19–22#. The
theory of parametric excitation of the eigenmodes, linea
their amplitudes, enabled one to explain a number of cha
teristic features of PPO@13,23,24#.

Along with the origin of PPO, its relation to the photor
fractive effect also became clear. The photorefractive ef
is described by two wave equations: the material wave eq
tion, which governs the SCWs, and the optical wave eq
tion which governs the light propagation. Basically, PPO i
material effect, hence, it is described by the material w
equation. So, as regards PPO, the optical part of the ph
refractive effect is in use solely when visualizing the effe
experimentally, as the induced SCWs are read out by diffr
tion of an optical read-out beam. Unfortunately, the mate
and optical effects are mixed in many of the PPO exp
ments performed@6–10,16–19#. However, in 1994 McClel-
land et al. @12# introduced an experimental configuration
which it is possible to isolate the two effects from one a
other due to which more ‘‘pure’’ results can be obtained
was then finally proven that, basically, PPO is a nonlin
material effect that can appear independently of the opt
effect.

The linear theory of PPO@11# is only a first step towards
a full description of the process, as this theory only descri
the growth rate of the parametric wave amplitudes and
threshold values of different parameters. It does not incor
rate the effect of saturation~steady state! of the parametric
wave amplitudes nor does it touch the problem of stabi
against excitation of new parametric waves. To descr
these important aspects one needs to develop a nonl
theory which involves the parametric waves’ nonlinear int
action with themselves and other waves present in the
dium. The necessity for such a theory is obvious not o
because of completeness, but also in view of the fact
nearly all experimental results on PPO have been obtaine
steady state.

The foundations of the nonlinear theory were laid in R

@22# in which the steady state of the simplest case,KW /2 sub-
harmonic generation~DPO!, was analyzed. It was shown th
the amplitudes of the saturating parametric waves are de
mined to a large degree by their nonlinear frequency sh
In particular, various stationary states of the parame

FIG. 2. Geometrical scheme of the wave vectors for the th

characteristic types of PPO.kWS andkW I are the wave vectors of th

additional SCWs andKW is the fundamental wave vector. The cas
~a!, ~b!, and ~c! are related to the cases of degenerate param
oscillation ~DPO!, longitudinal parametric oscillation~LPO!, and
transversal parametric oscillation~TPO!, respectively.
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waves beyond the threshold as well as their feedback to
fundamental wave may be expressed in terms of these sh
Another important notion of the nonlinear theory is th
renormalization of the nonlinear coupling constant. Suc
renormalization is important for analyzing the stability of th
nonlinear regimes against small perturbations. As was sh

in Ref. @22#, the KW /2 subharmonic state is always unstab
with respect to excitation of parametric waves with wa

vectors nearKW /2 ~so-called modulational instability!.
So, until now, the only knowledge we have as regards

steady state of PPO is that the simplest case,KW /2 subhar-
monic generation, is unstable. In this paper we wish to
tend the analysis of Ref.@22# to include a general state o
TPO, i.e., a general transversal split between the param
wave vectors is allowed. The reason for choosing TPO
not LPO is that the theoretical treatment of the latter is m
complicated if one wants to describe the entire range of l
gitudinal split. Moreover, the TPO case is still the most sp
tacular one, as its origin is still not completely understoo
We start our analysis in Sec. II by considering the fundam
tal relations connected with generation of SCWs, such as
wave equation and the dispersion law for eigenwaves. Ba
on the wave equation we introduce two nonlinear coupl
coefficients, which simplifies the derivation of the nonline
theory. In Sec. III we present the linear analysis of the s
bility of the fundamental wave against excitation of param
ric waves. In this section the main characteristics of param
ric waves are explained and the use of our nonlin
coupling coefficients is demonstrated. In Sec. IV we pres
the main ideas of the nonlinear theory and introduce
concept of nonlinear frequency shift. In Sec. V the stea
states of the parametric waves are found from the nonlin
theory and in Sec. VI the stability of these steady state so
tions is analyzed against small perturbations in the ste
state amplitudes. This is referred to as analysis of inter
stability. The stability analysis is then extended in Sec. V
to the external type in which the perturbations assume
form of new parametric waves. This analysis leads us to S
VIII in which the main results are discussed.

II. FUNDAMENTAL RELATIONS

In this section we describe the fundamental characteris
of SCWs in sillenite crystals. We consider here, as we
throughout the paper, an experimental configuration like
one shown in Fig. 1. Two coherent optical beams are in
dent symmetrically to a photorefractive sillenite crystal
that the applied electric fieldEW 0 and the wave vector of the

light interference pattern,KW , are both directed along thex
axis. Due to the frequency shiftV the light interference pat-
tern I moves as a harmonic intensity wave along thex axis,
thus its dependence on time and space can be written in
following form:

I 5I 01I 15I 0@11m cos~Kx2Vt !#, ~1!

whereI 0 andI 1 are the dc and ac parts of the intensity,m is

the intensity contrast, andK is the magnitude ofKW . Due to
the photoconductivity of the crystal the light excites ele
trons from filled donors to the conduction band after whi

e
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they are free to drift and diffuse away from the light region
in which many electrons are excited, to darker regions wh
they can recombine with empty donor sites. This results in
inhomogeneous charge distribution which moves along w
the light pattern, hence, a space-charge wave is formed.
photoexcitation, drift, diffusion, and recombination of ele
trons are described by the band transport equations whe

the Poisson equation governs the space-charge fieldEW 1 gen-
erated by the charge separation@25#. Applied to crystals of
the sillenite family, all these equations can be combined
give one single equation for the space-charge field@7,10,11#:

EW 0•~¹2EẆ 1!1
kBT

q
¹W •~¹2EẆ 1!2

1

mt
¹W •EẆ 12zI 0¹W •EW 1

1
kBT

q
v0¹W •~¹2EW 1!1v0EW 0•~¹2EW 1!

5zEW 0•~¹W I 1!1
kBT

q
z¹2I 11z¹W •~ I 1EW 1!

2¹W •@EW 1~¹W •EẆ 1!#. ~2!

This is referred to as the material wave equation. Note
one nonlinear term which was included for completenes
Refs.@7,10# has been omitted here because it gives only
nor contributions to the final results.kB is here the Boltz-
mann constant,T is the absolute temperature,q is the abso-
lute value of the electronic charge,m is the mobility of free
electrons, andt is the free electron lifetime. The paramete
v0 and z are given byv05sI0ND /NA and z5sqND /«0«S
wheres is the cross section of the photoexcitation of ele
trons,ND is the density of donors,NA is the density of ac-
ceptors, and«0«S is the permittivity of the crystal. The do
above some terms in Eq.~2! denotes the time derivative. I
deriving the wave equation it has been assumed that
space-charge field is much less than the so-called satur
field given byEsat5qNA /«0«SK @26#. This condition is al-
ways fulfilled for the relatively small wave numbers in
volved in the PPO processes. The details of the derivatio
Eq. ~2! can be found in Refs.@7,11#.

The left-hand side of Eq.~2! is linear inEW 1 ; it determines
the fundamental characteristics of the eigenwaves to be
sented in Sec. II B. The first two terms on the right-hand s
represent the driving force due to the intensity distribut
I 1 . The two doubly underlined terms on the right-hand s
of Eq. ~2! are referred to as nonlinear terms. The first term
a so-called parametric term in the sense that the coefficieI 1
oscillates harmonically. The parametric term can cause n
linear coupling between the intensity waveI 1 and the space

charge field waveEW 1 . The second doubly underlined ter
describes the eigennonlinearity. This term is responsible
the space-charge field’s interaction with itself. The reas
why both doubly underlined terms can be referred to as n
linear is that they both give rise to nonlinear effects, such
higher harmonic generation and parametric oscillation.

As mentioned, Eq.~2! describes the wave propagation
the space-charge field. There exist, however, other equiva
waves in the crystal that in temporal and spatial struct
exactly mimic the space-charge field waves. First, the sp
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charge field waves are formed by space-charge waves;
are connected simply by the Poisson equation. Secondly,
could also choose to consider the waves of the electros

potential w given by EW 152¹W w. This approach has bee
used before@11,22#. Finally, because photorefractive med
exhibit Pockels effect the space-charge field waves are
companied by waves in the permittivity of the crystal whi
can be referred to as holographic waves or running ph
gratings. However, because all the equivalent waves are
nected by simple, linear relations we need only choose
of them to describe the wave propagation. In this paper,
choose from now on the space-charge field waves~SCFWs!
described by Eq.~2!, as this parameter is the one typical
considered in photorefractive science.

A. Linear eigenwaves

Before describing the nonlinear processes it is conven
to consider first the linear case. This is because the wa
that take part in the nonlinear interactions appear to h
spatial and temporal characteristics similar to those for
linear eigenwaves. How can we excite an eigenwave? Le
consider the experimental configuration shown in Fig.
where, provisionally, the light pattern is characterized by

arbitrary wave vectorkW that is not necessarily directed alon
thex axis. The light pattern is assumed to have a sufficien
low contrastm so we can assume that the medium respo
linearly by forming a SCFW with the same wave vector a

temporal frequency~kW and V! as the driving light pattern.
Then, after some time, steady state is reached, i.e., a SC
with constant amplitude is present. After that we sudde
switch off the light contrast. In practice, this can be done,
example, by a rapid sine-form phase modulation of one
the optical beams@27#. In this case the ac part of the ligh
pattern disappears and, thus, the driving force equals z
The question is then, how will the SCFW decay in this si
ation? The answer is, it will decay as an eigenwave, a
sometimes called a free wave as the wave is not forced
any external force.

To analyze this formally we insert anAnsatzfor the wave,

EW 15 k̂E10exp(ikW•rW2iṽt)1c.c., into the linear, undriven ver
sion of the wave equation~2!, i.e., the right-hand side is se

equal to zero. Herek̂ is a unit vector alongkW , E10 is the
initial amplitude of the space-charge field,ṽ is the ~un-
known! frequency, and ‘‘c.c.’’ stands for complex conjugat

To obtain nontrivial solutions, we find thatṽ andkW have to
fulfill the following so-called linear dispersion relation:

ṽ5v0

Eq,kW1ED,kW2 iE0

E01 iED,kW1 iEM ,kW
[v̄kW2 igkW , ~3!

where Eq,kW5qNA /«0«Skx , ED,kW5kBTk2/qkx , and EM ,kW

5(mtkx)
21 are characteristic electric fields.kx denotes thex

component~longitudinal component! of kW . v̄kW is referred to
as the eigenfrequency andgkW is called the damping coeffi
cient of the eigenwave. In conclusion, the space-charge fi
wave decays as an eigenwave with the frequencyv̄kW and the
damping coefficientgkW .

By taking the imaginary part of Eq.~3! one finds that
three terms contribute to the damping of the waves: one
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to diffusion, one due to drift, and one due to recombinat
of the electrons. Thus energy is lost as~i! Ohmic losses,
when the electrons diffuse and drift through the medium a
~ii ! recombination losses, when the electrons jump from
high-energy conduction band level to the low-energy do
level.

As the expressions forv̄kW andgkW are rather complicated

in kW we wish to introduce a few simplifications. To justif
these we have plotted the different characteristic fields ve
kx in Fig. 3. We consider in this figure the interval whe
0,kx,2p/10mm21 because this is the region where t
PPO processes typically take place. It is seen that if
chooseE0 to be about 106 V/m (log10@E0#56) we can as-
sume that apart from the narrow, hatched region in whichkx
is less than about 2p/150mm21 we have the following con-
ditions fulfilled: Eq,KW @E0@EM ,KW , ED,kW . In this case we
have v̄kW'vkW[v0Eq,kW /E0 . Moreover, asED,kW is small ev-
erywhere in the considered region ofkx we can neglect this
field. As we shall see later, some particular subprocesse
PPO involve waves withkx being very close to zero. In thes
cases we cannot setv̄kW5vkW , so there we have to use the fu
expression.

In the lower part of Fig. 3 we have plotted the so-call
quality factorQkW , which is given byQkW5v̄kW /gkW , for vari-
ous values ofE0 . QkW/2p expresses the number of wav
lengths the free wave travels before its amplitude is down
1/e of its original value. If we chooseE05106 V/m it is seen
that outside the hatched region the quality factor can be c
sidered as being much larger than unity, which, as we s
see, is of major importance in the nonlinear theory to
considered in this paper. It is worth noting that if the tran

FIG. 3. Dependence of the characteristic fieldsEq,kW , EM ,kW , and
ED,kW on a log10 scale~upper plot! and the quality factorQkW ~lower
plot! on the longitudinal component of the wave vector,kx . In the
lower plot curves 1–4 correspond toE051, 5, 10, and 20 kV/cm,
respectively. All plots have been obtained on the basis of typ
material parameters for the sillenite crystal BSO@7#.
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versal component ofkW is increased, the quality factor de
creases. Hence, longitudinally propagating eigenwaves~i.e.,

kW iEW 0! are the weakest damped modes.

B. The fundamental wave

In our analysis of PPO we also need to know the spa
charge field in the forced case, i.e., when the intensity c
trast is present. So, now we consider again the case w
the light pattern runs along thex axis with a wave vector

KW iEW 0 . We want to find the space-charge field in the line
case, hence, we neglect the nonlinear terms in Eq.~2!. In this
case the space-charge field has the same spatiotemporal

as the intensity pattern, i.e.,EW 15 x̂E0eKW ,L exp(iKx2iVt)
1c.c., wherex̂ is a unit vector in thex direction. This wave
is referred to as the fundamental wave. By using Eq.~2! one
can obtain the following expression for the normalized a
plitude,eKW ,L @5,11#:

eKW ,L5
m

2

vKW

V2vKW 1 igKW
, ~4!

where we assume thatK is outside the hatched region in Fig
3, thusv̄kW'vkW . The subscript ‘‘L ’’ refers to the linear case
It is known that the linear expression in Eq.~4! is only valid
in restricted intervals ofm andV. For sufficiently high val-
ues of m and for V sufficiently close to the fundamenta
eigenfrequencyvKW , nonlinear contributions from higher or
der waves affect the fundamental amplitude@28,29#. How-
ever, the PPO effects considered in this paper occur forV far
from vKW ~for V'4vKW ! due to which Eq.~4! can be used
with good accuracy even form51. For this region ofV we
can even make further simplifications and write

eKW ,L>
m

2

«

12«
, ~5!

where« is a dimensionless parameter given by«5vKW /V.

C. Wave equation ink space

In the nonlinear case the space-charge field invol
waves with other wave vectors than the one prescribed by
intensity pattern. Hence, the space-charge field consists
general, of a sum over all waves present in the medium,

EW 15E0(
a

k̂aẽkWa
exp~ ikWa•rW !, ~6!

wherea numerates the waves.ẽkWa
is the normalized, com-

plex, and time oscillating amplitude of the wave with wa

vectorkWa . Since the space-charge field is a real quantity
have thatẽ2kWa

52ẽ
kWa

* . By combining Eq.~6! with the wave

equation ~2! and singling out the terms proportional t

exp(ikWa•rW) we obtain

l
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e8 kWa
1~gkWa

1 i v̄kWa
!ẽkWa

52 i
m

2
vkWa

daF exp~2 iVt !

2
m

2
~ i v̄kWa

1gkWa
!

3F kWa•~kWa1KW !

kaukWa1KW u
ẽkWa1KW exp~ iVt !

1
kWa•~kWa2KW !

kaukWa2KW u
ẽkWa2KW exp~2 iVt !G

2
gkWa

1 i v̄kWa

ivkWa

(
b

~kWa•kWb!ukWa2kWbu

kakbka,x

3ẽkWb
e8 kWa2kWb

, ~7!

wheredaF is the Kronecker delta; the index ‘‘F ’’ refers to

fundamental, i.e.,kWF5KW . Again, the sum overb includes all

the waves present. The length of a vectorkWa is denoted either

by ka or by ukWau and thex component of the vector is de

noted byka,x . Equation~7! is the wave equation inkW repre-
sentation; it is validfor all values of ka,x considered in Fig.
3, i.e., also in the hatched region. As in Eq.~2! the doubly
underlined terms on the right-hand side of Eq.~7! represent
the parametric nonlinearity and the eigennonlinearity,
spectively.

D. Nonlinear three-wave interaction

The quadratic structure of the nonlinear terms in Eq.~7!
implies that, basically, it is nonlinear three-wave interactio
that can take place in the cases under study. As a first

ample, suppose that two SCFWs,ekWa
exp(ikWa•rW2ivat)1c.c.,

ekWb
exp(ikWb•rW2ivbt)1c.c., and the intensity wave

1
2 mI0 exp(iKx2iVt)1c.c., are present in the medium. Mor
over, let us assume that the following spatial and tempo
synchronism conditions are fulfilled:

KW 1kWb5kWa , V1vb5va . ~8!

If we insert theAnsätze into the parametrically nonlinea
term @PN# in Eq. ~7! and assume that only the three wav
are present in the medium, the terms proportional

exp(ikWa•rW2ivat) are given by

@PN#exp~ ikWa•rW2 ivat !5 iŪ kWa ;kWb
ekWb

, ~9!

where

ŪkWa ;kWb
52

m

2
~v̄kWa

2 igkWa
!k̂a• k̂b , ~10!
-

s
x-

al

o

and k̂a ,k̂b are unit vectors alongkWa ,kWb , respectively.
ŪkWa ;kWb

may be called the coupling coefficient between t

ekWa
wave and theekWb

wave due to the linking intensity wave
As a second example, suppose that the two SCFWs f

above and a third wave,ekWd
exp(ikWd•rW2ivdt)1c.c., are now

the only ones present, where nowkW d1kWb5kWa and vd1vb
5va . Inserting theseAnsätze in the eigennonlinearity term
@EN# in Eq. ~7! one can find that the terms proportional

exp(ikWa•rW2ivat) are given by

@EN#exp~ ikWa•rW2 ivat !5 iV̄kWa ;kWb ,kWd
~vb ,vd!ekWd

ekWb
, ~11!

where

V̄kWa ;kWb ,kWd
~vb ,vd!5

gkWa
1 i v̄kWa

ivkWa

dS k̂a• k̂d

kb

ka,x
vb

1 k̂a• k̂b

kd

ka,x
vdD . ~12!

The factor d5(11dbd)21 is a degeneracy factor whic
equals unity except for the degenerate case whereb5d; in
this cased5 1

2 . In deriving Eq.~11! we have assumed tha
the wave amplitudes vary slowly as compared to their os
lation periods 2p/v i . Due to this, we can neglect theėkW i

terms in @EN# ~slowly varying amplitude approximation!.
V̄kWa ;kWb ,KW d

(vb ,vd) may be referred to as the coupling coe
ficient between the three SCFWs.

If ka,x is well outside the hatched region in Fig. 3 we ha
QkWa

@1 and the expressions forŪ and V̄ can be simplified:

ŪkWa ;kWb
'UkWa ;kWb

[2
m

2
vkWa

k̂a• k̂b ,
~13!

V̄kWa ;kWb ,kWd
~vb ,vd!'VkWa ;kWb ,kWd

~vb ,vd!

[dS k̂a• k̂d

kb

ka,x
vb1 k̂a• k̂b

kd

ka,x
vdD .

Note that in this case, theU andV coefficients become real
As we shall see, the introduction of theU andV coefficients
considerably facilitates the derivation of the coupled amp
tude equations in our nonlinear theory. In particular, wh
many waves are present they appear to be very useful.

III. EXCITATION OF PARAMETRIC WAVES

It is known @28,29# that the nonlinear terms in the wav
equation~7! can generate higher order waves with wave v

tors 2KW ,3KW , etc. However, at«> 1
4 , which is the main region

of concern in the present paper, these waves are far f
resonance and, consequently, their amplitudes are neglig
small. In this section we introduce another type of wav
which is also due to the nonlinear terms in the wave eq
tion. These are the parametric waves. The parametric wa
always appear in pairs interacting with a third wave, t
pump wave, from which they receive their energy. To
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able to do so, they need to meet the following conditions
parametric resonance:

kWS1kW I5KW ,
~14!

vkWS
1vkW I

5V,

where kWS,I are the wave vectors of the parametric wav

vkWS ,kW I
are the corresponding eigenfrequencies, andKW ,V are

the wave vectors and frequency of the pump wave. If th
conditions are fulfilled the two parametric waves might
excited provided the pump is sufficiently strong.

In the general situation, however, we need to be able
describe also the case where Eqs.~14! are not completely
fulfilled. Therefore we allow the parametric waves to assu
arbitrary frequenciesvS,I though still close to their respec
tive eigenfrequencies, i.e.,vS,I>vkWS ,kW I

, and still so thatvS

1v I5V. In this manner the parametric waves may still
considered as having the fundamental properties of eig
waves.

Let us consider the excitation of parametric waves in

concrete case. Let the fundamental wave with wave vectoKW

and frequencyV act as the pump wave. Apart from this wav
there is also some noise in the space-charge field that ca
considered as a statistical mixture of many weak waves

two of these noise waves have wave vectorskWS ,kW I and fre-

quenciesvS ,v I meeting the conditionskWS1kW I5KW and vS
1v I5V, they can interact with the fundamental wave v
the nonlinear terms in Eq.~7! and start growing in time. We
then say that the parametric waves are excited and we
the state of photorefractive parametric oscillation. The pa
metric waves are sometimes called signal and idler wa
which are names taken from similar parametric processes
optical waves@4#. This is why we use the subscripts ‘‘S’’
and ‘‘I ’’ for the parametrically conjugated waves. It shou
be underlined that there is no conceptual difference betw
these two waves.

Imagine now that att50 we have the fundamental wav
with the amplitudeeKW and two parametric waves with am
plitudesekWS

andekW I
on noise level, i.e., they are very sma

For a sufficiently small period of time while the paramet
amplitudes are still relatively small, we can assume that
fundamental wave is not affected by the parametric wav
Hence, at this stage the nonlinear terms in Eq.~7! are negli-

gible in the equation forkWa5KW and, as a result,eKW may be
set equal toeKW ,L . As regards the parametric waves with t

wave vectorskWa5kWS,I , the nonlinear sum in Eq.~7! includes
terms proportional to the large amplitudeeKW ,L . Hence, non-
linear effects are important for these two waves. The co
sponding amplitude equations may be derived assuming
following form of the space-charge field:

EW 15E0@ x̂eKW ,Lexp~ iKx2 iVt !1 k̂SekWS
exp~ ikWS•rW2 ivSt !

1 k̂IekW I
exp~ ikW I•rW2 iv I t !1c.c.#, ~15!
f

,

e

to

e

n-

r

be
If

ve
-
s

or

en

e
s.

-
he

whereekWS
(t) andekW I

(t) are the amplitudes of the parametr
waves. By inserting Eq.~15! in Eq. ~7! and using Eqs.~9!
and ~11! we arrive at the following amplitude equations:

ėkWS
1@gkWS

1 i ~v̄kWS
2vS!#ekWS

52 iŪ kWS ;2kW I
e

kW I

* 2 iV̄kWS ;2kW I ,KW ~2v I ,V!eKW ,Le
kW I

* , ~16!

ėkW I
1@gkW I

1 i ~v̄kW I
2v I !#ekW I

52 iŪ kW I ;2kWS
e

kWS

* 2 iV̄kW I ;2kWS ,KW ~2vS ,V!eKW ,Le
kWS

* , ~17!

In deriving Eqs.~16! and~17! we have assumed thatekWS
and

ekW I
are slowly varying, i.e.,ėkWS

!vSekWS
and ėkW I

!v IekW I
. The

set of equations~16!, ~17! has a solution of the formekWS

}exp(nt) and e
kW I

* }exp(nt), wheren is referred to as the in-

crement. Using this representation we obtain

@n1g1 i ~vkWS
2vS!#ekWS

52 ihSe
kW I

* , ~18!

@n1g2 i ~vkW I
2v I !#ekW I

* 5 ihIekWS
, ~19!

where the coupling coefficientshS andhI are given by

hS5UkWS ;2kW I
1VkWS ;2kW I ,KW ~2vS ,V!eKW ,L ,

hI5UkW I ;2kWS
1VkW I ;2kWS ,KW ~2v I ,V!eKW ,L , ~20!

In Eqs.~18!,~19! we have assumed thatgkWS
.gkW I

.g, which

holds true if the longitudinal components ofkWS andkW I are not

far from KW /2. Furthermore, in Eqs.~20! we have assumed

that kWS , kW I are outside the hatched region in Fig.
so that ŪkWS ;2kW I

>UkWS ;2kW I
and V̄kWS ;2kW I ,KW (2vS ,V)

>VkWS ;2kW I ,KW (2vS ,V). As a consequence, the coupling c
efficients become real parameters. The linear system of a
braic equations~18!,~19! involves the unknownsn and vS
~sincev I5V2vS!.

To obtain a nontrivial solution forekWS
,e

kW I

* we should

equalize to zero the determinant of this system which gi
us the characteristic equation. From the imaginary part
this equation together with the temporal synchronism con
tion we obtain

vS5vkWS
1D, v I5vkW I

1D,
~21!

D5 1
2 @V2~vkWS

1vkW I
!#.

As is seen,D represents the parametric waves’ detuning fro
their eigenfrequencies.

From the real part of the characteristic equation we obt

n652g6AhShI2D2. ~22!

If the incrementn1 is positive~n2 is always negative! the
parametric wave amplitudes increase exponentially in ti
and we can say that the fundamental wave is unstable ag
excitation of the parametric waves.
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To obtain the explicit dependence on the parametric w

vectorskWS andkW I we introduce the following representatio

kWS5
K

2
@~11X!x̂1Yŷ#, kW I5

K

2
@~12X!x̂2Yŷ#,

~23!

where x̂ and ŷ are unit vectors along the longitudinal an
transversal directions. The dimensionless parametersX and
Y thus express, respectively, the longitudinal and transve
split between the parametric wave vectors. In the simp

case of degenerate parametric oscillation~KW /2 subharmonic
case!, we haveX5Y50. In the case of transversal parame
ric oscillation we haveX50 andYÞ0. In this casen1 can
be written in the following simple form provided thatu1
24«u, Y!1:

n1

vKW /2
>2Q

KW /2

21
1S m2

9 F122Y22
5

3
~124«!G

2~124«!2D 1/2

, ~24!

where the first term under the radical originates from
producthShI , the last term fromD2. Equation~24! repre-
sents a simplified version of a similar expression obtaine
Ref. @11#. One can see from Eq.~24! that a large quality
factor QKW /2 and a large intensity contrastm both favor the
instability whereas increasingY suppresses the instability.
means, in particular, that the degenerate case (Y50) is char-
acterized by the largest increment. As regards the dep
dence on« this is displayed for different values ofm in Fig.
4 for the caseY50 andQKW /256.5 ~typical for sillenites, see
Fig. 3!. First of all, it is seen that the maximum normalize
increment does not exceed 0.2. This means that the slo
varying amplitude approximation holds true in all the cas
considered. Secondly, one sees that the maximum increm
is obtained for 0.25&«&0.28. From Eq.~22! one might
think thatD50 ~i.e., «50.25! would give maximum incre-
ment. The reason why the optimum values of« are slightly
shifted upwards is thathShI increases with«, as seen in Eq
~24!, due to which the optimum value of« is slightly shifted
upwards bym2/43. Thus for some small region beyond«5
1
4 the detuning from resonance of the parametric wave
compensated by the increase of the coupling coefficie

FIG. 4. Normalized incrementv1 /vKW /2 versus« for different
values ofm.
e

al
st
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e
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n-

ly
s
nt

is
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One has to bear in mind, however, that higher order corr
tions to the linear theory might be significant, especially
m close to unity, so that the maximums in Fig. 4 might
slightly altered@23#.

By settingn150 in Eq. ~24! one can find the threshold
condition for the instability. The threshold value for the co
trast can thus be found to give

mth53S Q
KW /2

22
1~124«!2

122Y22
5

3
~124«!D

1/2

. ~25!

A useful parameter to be used in the next sections is
supercriticallityj defined by

j5AhShI2g2. ~26!

From Eq. ~22! one can see that ifuDu,j the increment is
positive and the parametric waves grow exponentially.

IV. FORCED WAVES AND NONLINEAR
FREQUENCY SHIFTS

In Sec. III we considered the situation where only t
strong fundamental wave and the two weak parame
waves were present in the medium. We saw that the fun
mental wave can become unstable against expone
growth of the parametric waves. Naturally, after some ti
of exponential growth we can no longer consider the pa
metric waves as weak, so to be able to describe the sta
zation ~saturation! of the growth we need to modify the lin
ear theory. What happens as the parametric waves bec
stronger? They start to generate so-called forced wa
These waves are generated when two strong waves inte
via the nonlinear terms in Eq.~7! and produce forced sum o
difference waves with temporal and spatial frequencies
equal the sum or difference between the two strong wav
frequencies. Moreover, to be considered as forced, a w
should be driven far from resonance. It means that if a for

wave is driven at the wave vectorkW and frequencyv, thenv
should be far fromvkW .

What is the effect of forced waves apart from just bei
present in the medium? Can they disturb the original fun
mental and parametric waves? Indeed they can; they can
part in further three-wave interactions with the origin
waves and thereby alter their amplitudes. In the present p
all forced waves are generated with participation of at le
one parametric wave. Therefore, as a general example, le
consider the effect of the forced wave formed by the su
mation of the parametricS wave and another arbitrary wav

with wave vectorkWa and frequencyva . To find the ampli-

tude of this forced wave which has the wave vectorkWS1kWa
and frequencyvS1va we use the following solutionAnsatz
in Eq. ~7!:

EW 15E0$k̂SekWS
exp~ ikWS•rW2 ivSt !1 k̂aekWa

exp~ ikWa•rW2 ivat !

1ûkWS1kWa
ekWS1kWa

exp@ i ~kWS1kWa!•rW2 i ~vS1va!t#1c.c.%,

~27!

and neglect for a moment all other waves. HereûkWS1kWa
de-
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notes a unit vector alongkWS1kWa andekWS1kWa
is the amplitude

of the forced wave. By singling out the terms proportional

exp@i(kWS1kWa)•rW2i(vS1va)t# one can obtain the following
amplitude equation:

F d

dt
1gkWS1kWa

1 i @vkWS1kWa
2~vS1va!#GekWS1kWa

5 idaFUkWS1kWa ;kWS
ekWS

1 iVkWS1kWa ;kWS ,kWa
~vS ,va!ekWa

ekWS
,

~28!

where the Kronecker deltadaF accounts for the case wher

kWa5kWF[KW ; in this case the intensity wave also takes part
the generation of the forced wave.

We now introduce an important simplification. By usin
the fact that the forced wave is excited far from resona
and that QkWS1kWa

@1, we can neglect the termsd/dt
to

i
an

n

e

1gkWS1kWa
in comparison with the large termi @vkWS1kWa

2(vS

1va)] on the left-hand side of Eq.~28!, which expresses the
detuning from resonance. As a consequence of this,
forced amplitudeekWS1kWa

is immediately obtained:

ekWS1kWa
5daF

UkWS1kWa ;kWS

vkWS1kWa
2~vS1va!

ekWS

1
VkWS1kWa ;kWS ,kWa

~vS ,va!

vkWS1kWa
2~vS1va!

ekWa
ekWS

. ~29!

We are now ready to determine the influence of this forc
wave on the parametricS wave with amplitudeekWS

. By sin-
gling out the terms in Eq.~7! that are proportional to

exp(ikWS•rW2ivSt) one can find
F d

dt
1gkWS

1 i ~vkWS
2vS!GekWS

52 iU kWS ;2kW I
e

kW I

* 2 iVkWS ;KW ,2kW I
~V,2v I !eKW ,Le

kW I

* 1 idaFUkWS ;kWS1kWa
ekWS1kWa

2 iVkWS ;kWS1kWa ,2kWa
~vS1va ,2va!ekWS1kWa

e
kWa

* , ~30!

where we assume thatkWS1kWa is well outside the hatched region in Fig. 3. If one compares Eq.~30! with Eq. ~16! it is seen that
the last two terms on the right-hand side of Eq.~30! represent the correction due to the forcedekWS1kWa

wave. If, in Eq.~30!, one

substitutesekWS1kWa
with the expression from Eq.~29! one can obtain

ėkWS
1@gkWS

1 i ~v
kWS

nl
2vS!#ekWS

52 ihSe
kW I

* , ~31!

wherehS is given by Eq.~20!. The influence of theekWS1kWa
wave is thus represented in a modified eigenfrequencyv

kWS

nl
, called

the nonlinear eigenfrequency, which equals the linear eigenfrequencyvkWS
, plus a correctiondvkWS ,kWS1kWa

, called the nonlinear
frequency shift,

dvkWS ,kWS1kWa
52daFS UkWS ;kWS1KW UkWS1KW ;kWS

vkWS1KW 2~vS1V!
1

UkWS ;kWS1KW VkWS1KW ;kWS ,KW ~vS ,V!

vkWS1KW 2~vS1V!
eKW ,L

2
VkWS ;kWS1KW ,2KW ~vS2V,2V!UkWS1KW ;kWS

vkWS1KW 2~vS1V!
eKW ,LD 1TkWS ,kWS1kWa

NkWa
, ~32!

where

TkWS ,kWS1kWa
5zkWa1kWS

VkWS ;kWS1kWa ,2kWa
~vS1va ,2va!VkWS1kWa ;kWS ,kWa

~vS ,va!

vkWS1kWa
2~vS1va!

, ~33!
one
he
andNkWa
5uekWa

u2. The factorzkWa1kWS
in Eq. ~33! equals zero if

kWa1kWS50 and unity otherwise. It is included to take in

account that any forced wave with wave vector 0W vanishes
and thus cannot give rise to any frequency shift. This
because the spatially averaged electric field is fixed

equalsEW 0 . In a similar manner as for theekWS1kWa
wave, all

other forced waves can be represented by their freque
s
d

cy

shifts of the parametric eigenfrequencies, so that in total
ends up with the two modified amplitude equations for t
parametric waves:

ėkWS
1@gkWS

1 i ~v
kWS

nl
2vS!#ekWS

52 ihSe
kW I

* , ~34!

ė
kW I

* 1@gkW I
2 i ~v

kW I

nl
2v I !#ekW I

* 5 ihIekWS
, ~35!
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where the influences of all the forced waves are included

v
kWS

nl
andv

kW I

nl
. As for Eqs.~18!, ~19! the solutions to Eqs.~34!

and~35! assume the formekWS
, e

kW I

* }exp(nt) by which one can

obtain

vS5v
kWS

nl
1Dnl , v I5v

kW I

nl
1Dnl ,

n152g1AhShI2Dnl
2 , ~36!

Dnl5
1
2 @V2~v

kWS

nl
1v

kW I

nl
!#.

There is, however, a technical problem with Eqs.~36!. vS

and v I are not easily determined from these equations

causev
kWS

nl
andv

kW I

nl
depend explicitly onvS andv I in a rather

complicated manner, as can be seen from Eq.~32!. A way to
get around this problem is to use the fact that the parame
waves are nearly eigenwaves, i.e.,vS'vkWS

, v I>vkW I
, and

then simply replacevS by vkWS
andv I by vkW I

in the expres-

sion for v
kWS

nl
and v

kW I

nl
. In the case of transversal paramet

oscillation, however, we know thatvS5v I5V/2 in which
case no problem appears.

As demonstrated above, one can significantly simplify
calculations of including forced waves by using the conc
of nonlinear frequency shift, a concept that was introduce
the field of PPO recently@22#. The alternative would be to
solveN12 nonlinear differential equations, whereN is the
number of forced waves. With the present technique
problem is reduced to that of solving two linear different
equations given by Eqs.~34! and ~35!.

V. STEADY STATE FOR THE PARAMETRIC WAVES

In this section we use the technique of representing for
waves by their nonlinear frequency shifts to describe the
tionary states of the parametric waves.

As the parametric waves grow they start to interact w
themselves and the fundamental wave via the generatio
forced waves. Hence, in principle, all possible sum and
ference waves formed by the two parametric waves and
fundamental wave should be taken into account, i.e., wa

with wave vectorskWS6kWS , kWS6kW I , kWS6KW , kW I6kW I , and kW I

6KW . However, a few of these waves need to be remo

from the list:~i! thekWS2kWS andkW I2kW I waves vanish becaus

they have wave vectors equal to 0W , ~ii ! the waves with wave

vectorskWS,I2KW are identical to the parametric waves a
thus cannot be considered as forced. As a consequence
number of forced waves to be included reduces to six.
demonstrated in Sec. IV, the influence of the forced wa
can be represented by nonlinear modifications to the eig
frequencies of theS andI waves, so taking the remaining s
waves into account we obtain
in

-

ric

e
t

in

e
l

d
a-

of
f-
e

es

d

the
s
s
n-

v
kWS

nl
5vkWS

1dvkWS ,kWS1kWS
1dvkWS ,kWS1KW 1dvkWS ,kWS1kW I

1dvkWS ,kWS2kW I
, ~37!

v
kW I

nl
5vkW I

1dvkW I ,kW I1kW I
1dvkW I ,kW I1KW 1dvkW I ,kW I1kWS

1dvkW I ,kW I2kWS
,

It is worthy of note that the forcedkWS1kW I wave is considered
isolated from the fundamental wave even though they h
identical wave vectors and frequencies. One could add
two waves and then obtain a renormalized fundame
wave. In this presentation, however, we prefer to think of

two waves as separate due to which thekWS1kW I wave is act-
ing as a nonlinear frequency shift, as seen in Eq.~37!. Hence,

the indexKW always refers to the linear fundamental wa
with amplitude eKW ,L . Whatever representation is use
though, the same result is obtained.

At first sight, one might think that there is a problem wi
the shiftsdvkWS ,kWS2kW I

anddvkW I ,kW I2kWS
in Eq. ~37! because Eq.

~32! was derived under the assumption thatkWS and kWS1kWa

have sufficiently largex components. But the vectorkWS2kW I
may have a very smallx component whenkI ,x approaches
kS,x . Therefore we have to consider the validity of Eq.~32!
in this case. The key question to be asked is whether
expression for the forced wave amplitudeekWS2kW I

can be sim-
plified in the following way:

ekWS2kW I
5 i

V̄kWS2kW I ;kWS ,2kW I
~vS ,2v I !

gkWS2kW I
1 i ~v̄kWS2kW I

2vS1v I !
e2kW I

ekWS

>
VkWS2kW I ;kWS ,2kW I

~vkWS
,2vkW I

!

vkWS2kW I
2vkWS

1vkW I

e2kW I
ekWS

, ~38!

when kS,x approacheskI ,x? If we use Eqs.~12! and ~13! in
Eq. ~38! and cancel common factors one can find that
left- and right-hand sides of Eq.~38! can be represented by

f e exp~ ife!52
gkWS2kW I

1 i v̄kWS2kW I

vkWS2kW I
@gkWS2kW I

1 i ~v̄kWS2kW I
2vkWS

1vkW I
!#

,

f s52
1

vkWS2kW I
2vkWS

1vkW I

, ~39!

respectively, If we use the representations forkWS andkW I from
Eq. ~23! and, as an example, setY50 we can investigatef e
and f s for small values ofX. The two functions are plotted in
Fig. 5. As is seen,f s approachesf e when X goes to zero
(kI ,x→kS,x). Moreover, the phase off e is only a few degrees
which ensures that the frequency shift remains real. In c
clusion, we can use Eq.~32! in all actual cases.

The presence of the forced waves is now included inv
kWS

nl

andv
kW I

nl
from Eq. ~37!. To find the stationary amplitudes o

ekWS
andekW I

we can simply use Eqs.~34! and~35! and set the

d/dt terms equal to 0 after which we obtain

@g2 iDnl#ekWS
52 ihSe

kW I

* , ~40!
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@g1 iDnl#ekW I

* 5 ihIekWS
, ~41!

whereDnl is given by Eq.~36! with v
kWS

nl
andv

kW I

nl
taken from

Eqs.~37!.
From Eqs.~40! and ~41! one can immediately find the

following important relation for the amplitude products
5ekWS

ekW I
:

s[usuexp~2 iC!5
2 ihSNI

g2 iDnl
5

2 ihINS

g2 iDnl
. ~42!

Moreover, from the condition that the determinant of E
~40! and ~41! should equal zero one can obtain

g21Dnl
2 5hShI⇔Dnl

2 5j2, ~43!

where the sign⇔ is used between equivalent equations.
combining Eqs.~40!, ~41!, and~43! we obtain further

NkWS
5S hS

hI
D 1/2

usu,

NkW I
5S hI

hS
D 1/2

usu,

exp~2 iC6!5sgn@hS#
2 ig7j

AhShI

. ~44!

Finally, by using Eqs.~32!,~37! together with Eqs.~43! and
~44! we get

Dnl5D2D2Tusu⇔usu5
D2D2Dnl

T
, ~45!

where

D5 1
2 ~dvkWS ,kWS1KW 1dvkW I ,kW I1KW !,

T5
TkWS ,kWS1kWS

1TkW I ,kW I1kWS
1TkW I ,kW I2kWS

2 S hS

hI
D 1/2

1
TkW I ,kW I1kW I

1TkWS ,kWS1kW I
1TkWS ,kWS2kW I

2 S hI

hS
D 1/2

. ~46!

FIG. 5. Plots of the functionsf e and f s and of the phasefe

versusX. Again, the same parameters as in Fig. 3 have been u
along withK52p/30mm21.
.

From Eq.~43! we see thatDnl can assume two values,6j,
due to which we obtain the two stationary solutions

us6u5
D2D6j

T
. ~47!

Note that apart from the twos6 solutions we also have th
trivial solution,s050. Expressed by Eqs.~44! and ~47!, we
have now derived the stationary amplitudes of the parame
waves. The parameterD corresponds to the nonlinear fre

quency shifts due to thekWS,I1KW waves whereasT corre-

sponds to the shifts from thekWS6kW I , kWS1kWS , and kW I1kW I
waves.

Let us consider the expressions forus1u in the case of
transversal parametric oscillation, i.e.,X50 and YÞ0. In
this case we haveNkWS

5NkW I
5usu, thususu represents here th

modulus square of the amplitudes~energy! of the parametric
waves. For this particular case, the parameters entering
~47! assume the following simple form:

D

vKW /2
>124«,

D

vKW /2
>

«2m2

~4«13!~12«!2 F4«S 12
5

18
Y2D1

3

2
2

1

2
Y2G ,

j

vKW /2
>S 2Q

KW /2

22
1

m2«2

~12«!2 ~122Y2! D 1/2

,

~48!

T

vKW /2
>52

11

3
Y2,

where terms of orderY4 and higher have been neglecte
From Eqs.~47! and~48! it is seen that~i! being positive, the

nonlinear frequency shiftD due to thekWS,I1KW waves re-
ducesus1u, ~ii ! us1u increases with the quality factorQKW /2 ,
and~iii ! the nonlinear shifts represented byT reduceus1u; in
fact, us1u would go to infinity in the absence of these wave
Using Eqs.~47! and~48! a contour plot ofus1u versus« and
m can be obtained, see Fig. 6. It is seen thatus1u increases
with m and decreases withY. As regards the dependence o
«, us1u has a maximum that moves from«>0.25 towards
lower values asm increases. There is a peculiarity whenY

ed
FIG. 6. us1u versus« andm for different values ofY. The solid,

long dashed, medium dashed, and short dashed lines represe
casesY501 , 0.2, 0.3, and 0.4, respectively.



e

an
v

e

at
e
tw

ity
on
lit
sa
th

tri
s

n
-
i
?
T

ic

e
th

i
ilit

t

on,

ter-
-
of
ee

d

al-

ow-
t of

of

ain
dy

ese
as
ad-
et-

Fig.
ec.

s

ti-
ble
tric

ry
e of
all

aves

e

ten

ad
e
ep

es,

6122 57PODIVILOV, PEDERSEN, JOHANSEN, AND STURMAN
goes to zero. In this limit the waves with wave vectorskWS

1kWS and kW I1kW I become identical to the wave with wav

vectorkWS1kW I , hence, we have degeneracy. This causesT to
jump from 5 atY501 to 10

3 at Y50; thusus1u experiences
a corresponding jump upwards in this limit. Therefore
infinitely small transversal split between the parametric wa
vectors causes the energy of the parametric waves to b
duced by1

3 . This was discussed further in Ref.@22#.

VI. INTERNAL STABILITY
OF THE PARAMETRIC WAVES

In Sec. V we found three steady state solutionss0 and
s6 . The moduli of the three solutions are plotted schem
cally versusD in Fig. 7. The question is now, are thes
solutions stable? In general, one can distinguish between
types of stability: internal and external. Internal stabil
means stability of a stationary solution against perturbati
in amplitude or phase; external stability means stabi
against excitation of new waves. In this way, one can
that the fundamental wave is externally unstable, since
instability appears as growth of two additional parame
waves. This section deals with the internal stability analy
of the stationary solutions found in Sec. V.

Let us consider the modulus of the steady state solutio
represented byus i u ( i 50,2,1), and add a small perturba
tion to it, dus i u, so that the new perturbed steady state
us i8u5us i u1dus i u. What happens after this perturbation
Will the perturbed state decay back to the original state?
answer this we need to consider Eq.~36! for the increment
which depends viaDnl on the amplitudes of the parametr
waves. For the steady state solutions,n1 given by Eq.~36!
equals zero. If we linearize this equation for the perturb
amplitudes around the stationary amplitudes we obtain
increment

n152g1Ag212DnlTdus i u>
DnlTdus i u

g
. ~49!

If n1 is positive, the perturbed amplitudes will increase;
n1 is negative they will decrease. Let us analyze the stab
of the solutionss6 . g is always positive.T is positive too
for the cases considered here, see Eq.~48!. As regardsDnl ,
this equals the supercriticallityj for us i u5us2u and2j for
us i u5us1u. Let us first considerus i u5us2u. In this case we
haven15jTdus2u/g. From this, it follows that ifdus2u is
positive ~casea in Fig. 7! n1 is positive too. It means tha

FIG. 7. Schematic diagram of the modulus of the three ste
state solutions,s0 and s6 as functions ofD. Stable branches ar
represented by solid lines whereas unstable branches are r
sented by dashed lines.
e
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the parametric wave amplitudes increase and so doesusu. If,
on the other hand,dus2u is negative~caseb in Fig. 7! n1 is
negative andusu decreases. Hence, in total, any perturbati
positive or negative, away froms2 will lead to a divergence
from this steady state solution and, hence, the state is in
nally unstable. As regardss1 , the result of the internal sta
bility analysis will be just opposite due to the sign change
Dnl in Eq. ~49! and, hence, this state is internally stable, s
casesc andd in Fig. 7. As regards the stability ofs0 we
have analyzed this already in Sec. III and found that ifD2

.j2, s0 is stable. This inequality is, however, modifie
slightly here so that it now reads (D2D)2.j2 because of

the shifts from thekWS,I1KW waves.
An analysis of internal stability based on numerical c

culations was presented in Refs.@23,24# which gave the
same result as above. To the best of our knowledge, h
ever, the analytical treatment presented above is the firs
its kind.

VII. EXTERNAL STABILITY

In this section we present the external stability analysis
the steady state represented bys1 . As s2 is always inter-
nally unstable, this solution is not of any interest. The m
idea of our analysis is as follows. We consider the stea
state for the two parametric waves found in Sec. V. Th
two parametric waves will, from now on, be referred to
the primary parametric waves. We then assume that two
ditional parametric waves, referred to as secondary param

ric waves, with small amplitudes and with wave vectorskWS8 ,

kW l8 are present. The new wave vector scheme is shown in
8. As was the case for the primary parametric waves in S

III the wave vectorskWS8 , kW l8 can here be chosen arbitrarily a

long as the synchronism conditionkWS81kW l85KW is fulfilled.
With the external stability analysis we now wish to inves
gate whether the steady state solution from Sec. V is sta
against excitation of any of these secondary parame
waves. If so, the state is said to be externally stable.

To find the increment of instability for the two seconda
parametric waves we need again to consider the influenc
forced waves. In this particular case we have to include
forced waves generated by the secondary parametric w

and the three steady state waves~with wave vectorskWS , kW l ,

andKW !. In total, this involves new forced waves with wav

vectors kWS86kWS , kWS81kW , kWS86kW l , kW l86kW l , kW l81KW , and kW l8

6kW s , thus ten forced waves are included. Among these

waves, however, two are mentioned twice becausekWS82kWS

y

re-

FIG. 8. Wave vector scheme for the primary parametric wav

kWS,I , and the secondary parametric waves,kWS,I8 .
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52(kWl82kWl) and kWS82kW l52(kW l82kWS). As a result, eight dif-
ferent forced waves remain to be taken into account. T
inclusion of these waves in the theory obviously leads
nonlinear frequency shifts for the secondary parame
waves.

However, in addition to that, another type of contributi
is obtained. Consider, for example, the forced wave w

wave vectorkWS82kWS . This wave is driven partly by a term

proportional toekW
S8
e

kWS

* and partly by a term proportional t

ekW l
e

kW
l8

* , as kWS82kWS5kW l2kW l8 . When inserting these terms i

the dynamical equation forekW
S8

two terms proportional to

uekWS
u2ekW

S8
and ekWS

ekW l
ekW

l8
, respectively, appear. The differen

structure of these two terms is now evident: the first te
t
ce

t
tri
n

nd
tri
he

or
t

b

n

e
o
ic

h

gives a nonlinear frequency shift whereas the second
results in a so-called renormalization of the coupling coe
cient @22#. Taking all actual nonlinear shifts and renorma
izations into account leads to the total nonlinear eigen
quency and the total coupling coefficient for the second

kWS8 wave of the form

v
kW

S8
nl

5vkW
S8
1dvkW

S8 ,kW
S81kWS

1dvkW
S8 ,kW

S82kWS
1dvkW

S8 ,kW
S81KW

1dvkW
S8 ,kW

S81kW I
1dvkW

S8 ,kW
S82kW I

, ~50!

hS
nl5hkW

S8
1dhkW

S8 ;kW
S82kWS

1dhkW
S8 ;kW

S82kW I
1dhkW

S8 ;kW
S81kW I

.

The individual frequency shifts can be found using Eq.~32!
and the corrections to the coupling coefficient are given
dhkW
S8 ;kW

S82kWS
5

VkW
S8 ;kWS ,kW I2kW

I8
~vkWS

,vkW I
2vkW

I8
!VkW I2kW

I8 ;2kW
I8 ,kW I

~2vkW
I8
,vkW I

!

vkW I2kW
I8
1vkW

I8
2vkW I

s[SkW
S8 ,kW

S82kWS
s,

dhkW
S8 ;kW

S82kW I
5

VkW
S8 ;kW I ,kWS2kW

I8
~vkW I

,vkWS
2vkW

I8
!VkWS2kW

I8 ;2kW
I8 ,kWS

~2vkW
I8
,vkWS

!

vkWS2kW
I8
1vkW

I8
2vkWS

s[SkW
S8 ,kW

S82kW I
s, ~51!

dhkW
S8 ;kWS1kW I

5
VkW

S8 ;2kW
I8 ,KW ~2vkW I

,V!VKW ;kW I ,kWS
~vkW I

,vkWS
!

vKW 2V
s[SkW

S8 ,kWS1kW I
s.
ts

er-
ves

nal

-
s

or
The explicit expressions for theS coefficients are eviden
from Eq. ~51!. The first two terms are due to the differen

waves with wave vectorskWS82kWS andkWS82kW I whereas the las
term is due to the feedback from the two primary parame
waves on the pump wave. Note that the coupling coefficie
are no longer real because the corrections from Eq.~51! are
proportional to the complex parameters.

After having found the modified eigenfrequencies a
coupling coefficients for the pair of secondary parame
waves@the eigenfrequency and coupling coefficient for t

kW I8 wave may be found by interchanging the indicesS and I
in Eq. ~50!# we obtain two coupled amplitude equations f
the secondary parametric waves that are similar in form
Eqs.~34! and ~35!:

ėkW
S8
1@g1 i ~v

kW
S8

nl
2vS8!#ekW

S8
52 ihS8

nl e
kW

I8
* , ~52!

ė
kW

I8
* 1@g2 i ~v

kW
I8

nl
2v I8!#e

kW
I8

* 5 ihI 8
nlekW

S8
. ~53!

Again, the solution to this linear set of equations may
taken in the formekW

S8
, e

kW
l8

* }exp(nt). As a result, we get from

the real and imaginary parts of the characteristic equatio

2~g1n!Dnl
25Im$hS8

nl
~hI 8

nl
!* %,

~54!

~g1n!21~Dnl8 !22~Dnl
2!25Re$hS8

nl
~hI 8

nl
!* %,
c
ts

c

o

e

where Re$ % and Im$ % stand for the real and imaginary par
and

Dnl8 5 1
2 ~V2v

kW
S8

nl
2v

kW
I8

nl
!,

~55!

Dnl
25 1

2 ~v I82vS81v
kW

S8
nl

2v
kW

I8
nl

!.

The condition of external stability readsn,0. By combining
Eqs.~54! we find that the nonlinear stationary state is ext
nally stable against excitation of secondary parametric wa

with wave vectorskWS8 andkW l8 if the inequality

g21~Dnl8 !22Re$hS8
nl

~hI 8
nl

!* %2S Im$hS8
nl

~hI 8
nl

!* %

2g
D 2

>0

~56!

is fulfilled. The equal sign gives the threshold of the exter
instability.

Let us consider Eq.~56! for the particular case of trans
versal parametric oscillation,X50, and let the wave vector

kWS8 and kW l8 be represented by (K/2)@(12X8) x̂1Y8ŷ# and
(K/2)@(11X8) x̂2Y8ŷ#, respectively. If we assume that«
50.25 andY, X8, Y8 are all much smaller than unity, it is
possible to obtain the following simplified expressions f
the parameters involved in Eq.~56!:
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Dnl8

vKW /2
>2

5

72
m22X822

1

10 S 2
5

72
m21

j

vkW /2
D S 40

3

2
4X82

X821~Y2Y8!22
4X82

X821~Y1Y8!2D ,

hS8
nl

vKW /2
>2

m

3
~12X8!1S 10

3
14X82

X8@2X82~Y2Y8!2#

X821~Y2Y8!2

2
X8@2X82~Y1Y8!2#

X821~Y1Y8!2 Ds1 ,

hI 8
nl

vKW /2
>2

m

3
~11X8!1S 10

3
24X82

X8@2X81~Y2Y8!2#

X821~Y2Y8!2

2
X8@2X81~Y1Y8!2#

X821~Y1Y8!2 Ds1 ,
~57!

s1>
3

5
mS 2

5

72
m21

j

vKW /2
D S j

vKW /2
1 iQ

KW /2

21D ,

j

vKW /2
>S 2Q

KW /2

22
1

m2

9 D 1/2

.

Consider now some value ofY, i.e., some degree of trans
versal split between the primary parametric wave vectors
work out whether the stationary state for this particular c
is externally stable or not, we need to find the minimum
the left-hand side of the inequality~56!. If, at this minimum,
the left-hand side is negative, the stationary state is unsta
if it is positive, it is stable. By using the expressions in Eq
~57! with QKW /256.5 andm51 one can produce contour plo
of the left-hand side for different values ofY. A series of
these plots is shown in Fig. 9. The symmetries with resp
to theX8 andY8 axes means that we need only comment
the quadrant whereX8 and Y8 are positive. Starting atY
50.01 one can see that the minimum of the left-hand s
appears atX8>0.07 andY850 and that at this minimum the
left-hand side>20.06. Thus forY50.01 the stationary stat
is externally unstable against growth of secondary parame

waves with wave vectorskWS,I5(K/2)(160.07)x̂. This type
of instability may be referred to as longitudinal instability

the secondary parametric wave vectors are parallel withKW .
This is opposed to the modulational instability found for t

KW /2 subharmonic case@22#. At Y50.10 the stationary state i
still longitudinally unstable but the minimum has moved fu
ther out theX8 axis and, moreover, the minimum has i
creased to20.003. It means that the stationary state is s
unstable but the instability is very weak as the minimum
close to zero. Moreover, the region inX8-Y8 space in which
secondary parametric waves can be excited is drastically
duced, see the dashed contour. AtY50.12 the stationary
state has become stable as the minimum, which still app
on the X8 axis, is positive. AtY50.14 the minimum has
moved away from theX8 axis but it is even more positive, s
the stationary state stabilizes further asY is increased. Fi-
nally, at Y50.18 the minimum has moved close to theY8
axis.
o
e
f

le;
.

ct
n

e

ic

l
s

e-

rs

As mentioned, the contour plots in Fig. 9 are based on
simplified expressions in Eqs.~57!. To obtain accurate re
sults for a larger region ofY we have used the exact formu
las for Dnl8 , hS

nl , andhI
nl . These results are shown in Fig. 1

where the minimum is traced through theX8-Y8 space for
increasingY. It is seen that there is a good agreement w
Fig. 9. The numerical point of stabilization is atY50.09
which is only slightly lower than what was found from th

FIG. 9. Contour plots of the left-hand side of inequality~56! in
the X8-Y8 plane for six different values ofY. The dotted contours
represent negative values of the left-hand side, the dashed line
resent the threshold left-hand side equal to 0, and the solid l
represent positive values of the left-hand side. In all six plots
minima are marked by an asterisk,* . The minimum values given in
the plot have been normalized byvKW /2 .

FIG. 10. The points of (X8,Y8) that give a minimum left-hand
side of Eq.~56!, for different values ofY. These results are ob
tained from the exact formula. The open circles and dashed l
notify unstable points or branches; the closed circles and solid l
notify stable points or branches. AtY50.69 the minimum jumps
from (01,0.69) to~0,0!.
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simple expressions. The stationary state is stable untY
50.69 where the state becomes unstable against excitatio

the KW /2 subharmonic wave, hence another nonmodulatio
instability appears. In total, one can conclude that for«
50.25 andm51 the state of transversal parametric oscil
tion is stable for a certain degree of transversal split betw
the wave vectors of the primary parametric waves. It is wo
noting that what is causing the instability are the shifts fro

the difference waves with wave vectorskWS82kWS,I , kW I82kWS,I .
In the absence of these forced waves the stationary s
would have been stable.

By performing similar analyses for other values of« it is
possible to work out the region of stability of transvers
parametric oscillation in the«-Y plane, see Fig. 11. It is see
that with increasing«, from 0.2 to 0.3, the minimum ‘‘stable
value’’ of Y decreases almost linearly from 0.12 to 0.0
From above the stable region is bounded by the two regio
~3! and ~4!. In region~3! the stationary state is modulation
ally unstable, i.e., secondary waves with wave vectors n

kWS andkW I are excited here. In region~4! the stationary state is

unstable against excitation of theKW /2 subharmonic wave.
Figures 12 and 13 show similar diagrams form50.7 and

FIG. 11. Diagram of the different regions of stability or inst
bility for transversal parametric oscillation atm51. The dashed
abscissa axis indicates that the stationary state is modulatio
unstable forY50. In region 1 we have longitudinal instability, i
region 2 the stationary state is stable, in region 3 we have mod
tional instability, and in region 4 we have instability against ex

tation of theKW /2 subharmonic wave.

FIG. 12. Same as Fig. 11, except thatm50.7. In region 5 the
stationary solutions1 is nonexistent.
of

al

-
n

h

te

l

.
s,

ar

0.5. It is seen that the stable region~2! shrinks drastically as
m is decreased. Atm.0.46 the regions~1!, ~2!, and ~4!
disappear, meaning that the solutions1 no longer exists.

VIII. DISCUSSION

In the present paper we have found the stationary state
transversal parametric oscillation and analyzed the stab
above threshold of the parametric waves’ excitation. W
have shown that the growth of the primary parametric wa
is stabilized due to formation of nonlinearly forced wav
that exert a feedback on the parametric waves. This feedb
can be represented as a nonlinear shift of the eigenfreq
cies of the parametric waves. Thus the stabilization is wo
ing by pushing the parametric waves away from resonan
We have analyzed to which extent this stationary state
stable against excitation of secondary pairs of parame
waves. Our analysis is restricted to the case of transve
parametric oscillation in which the primary parametric wa
vectors have equal longitudinal components.

The outcome of the stability analysis depends, of cou
upon the parameters of a particular crystal as well as on
experimental conditions. However, a considerable part
these parameters enter the formulas via the quality fa

QKW /2 of the wave with wave vectorKW /2. Apart from this
quality factor we have only the intensity contrastm and the
temporal frequency of the light pattern,V, to take care of.
The optimum conditions for excitation of parametric wav
are fulfilled if V.4vKW andm51. In this case we have foun
that for 0.09,uYu,0.69, whereY is the ratio of the trans-
versal to the longitudinal component of the parametric wa
vectors, the stationary state is stable. Outside this interva

stationary state, in particular theKW /2 subharmonic state, is
unstable. Conclusively, we have succeeded in finding
first stable parametric waves. The region ofY, in which the
stationary state is stable, shrinks drastically asm is de-
creased. Atm50.46 the region of stability disappears.

We found different types of instability. For theKW /2 sub-
harmonic case the state is unstable against excitation

waves near toKW /2; this is referred to as modulational inst
bility. Then, for a small transversal split between the pa
metric wave vectors we find that the stationary state is
stable against excitation of parametric waves w
longitudinal wave vectors. On the other hand, if the transv
sal split is too large, then, depending on«, the state become

lly

a-

FIG. 13. Same as Fig. 12, except thatm50.5.
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either modulationally unstable or it becomes unstable aga
excitation of aK/2 subharmonic wave.

It is essential in the stability analysis to include al
waves that are generated by quadratic, nonlinear interact
between the secondary parametric waves and the prim
stationary waves. These waves are referred to as fo
waves and they can be included in the analysis in an extr
dinarily simple way, in the sense that they can be represe
either as nonlinear shifts of the eigenfrequencies of the
ondary parametric waves or as renormalizations of the c
pling constant between the secondary parametric waves
this manner, it is possible to include all the forced waves a
still keep the simple structure of the amplitude equations

One might now ask the question: What kind of pred
tions can be made as regards the outcome of a two-w
mixing ~running grating! experiment performed in a sillenit
crystal? First of all, we know that~for certain parameters! the
fundamental wave is unstable against excitation of param

ric waves with wave vectors near toKW /2. But what happens
in steady state is still a bit of an open question. We know t

a singleKW /2 subharmonic wave cannot be the final state, a

is unstable. On the other hand, we also know that theKW /2
subharmonic wave has the largest increment as compare

transversal parametric waves, hence the buildup of aKW /2
u-

n.
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ar
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ed
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ed
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ve
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subharmonic is favored. What might happen is that when

KW /2 subharmonic wave amplitude has grown up to so
level a broadening process starts which stabilizes the in
bility. If this is the case, the transversal parametric oscillat
state will never arise. Another possibility is that instead o

broadening of theKW /2 subharmonic wave, a pair of growin
transversal parametric waves will take over and stabilize
instability. In this case transversal parametric oscillation
comes the final state.

One way to experimentally verify the existence of stab
transversal parametric waves would be to use the so-ca
PPA technique@30# in which a second interference patte
excites the parametric waves. Then, after the transve
waves have grown up the second intensity pattern can
removed after which the parametric waves should keep be
present without any broadening. The results of such an
periment would be highly interesting.
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